Interpreting Neural Rankers

Understanding decisions made by Deep Learned Models in Information Retrieval Amazon Research Grant awarded to the L3S Research Center, Germany.

Today algorithmic decision making is prevalent in several fields including medicine, automobiles and retail. On one hand, this is testament to the ever improving performance and capabilities of complex machine learning models. On the other hand, the increased complexity has resulted in a lack of transparency and interpretability which has led to critical decision making models being deployed as functional black boxes. Being able to explain the actions of such systems will help attribute liability, build trust, expose biases and in turn lead to improved models. This has most recently led to research on extracting post-hoc explanations from black box classifiers and sequence generators in tasks like image captioning, text classification and machine translation. However little work has been to done on explaining the output of ranking models used in all commercial search engines today.

With this grant we plan to develop algorithms for post-hoc explanations of black box rankers. In particular we focus on text-based neural network rankers that learn feature representations which are hard to understand for developers and end users alike.

Who are we?

  • Jaspreet

    Jaspreet Singh

    PhD candidate
  • Zeon

    Zeon Fernando

    Graduate Student
  • Avishek

    Avishek Anand

    Junior Professor